A thermomechanical model for a 1-D shape memory alloy wire with propagating instabilities

نویسنده

  • John A. Shaw
چکیده

A thermomechanical boundary value problem and constitutive model are presented for a shape memory alloy (SMA) wire under uniaxial loading. The intent is to develop a one-dimensional continuum model of an SMA element that includes all the relevant thermomechanical couplings and is suitable for inclusion in finite element analyses. Thermodynamic relations are derived from phenomenological considerations consistent with recent experimental observations and are calibrated to a typical commercially available NiTi wire material. The model includes both temperature-induced and stress-induced transformations that are necessary to exhibit the shape memory effect and pseudoelastic behaviors. The model accommodates possible unstable mechanical behavior during stress-induced transformations by allowing softening transformation paths and including strain gradient effects. This should provide a tool to study propagating transformation fronts and localized latent heat transfer with the surroundings and a variety of interesting future structural applications, such as composites with embedded SMA elements. 2002 Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Thermo-Mechanical Behaviour Analysis of Activated Composites With Shape Memory Alloy Fibres

General thermo-mechanical behavior of composites reinforced by shape memory alloy fibers is predicted using a three-dimensional analytical micromechanical method to consider the effect of fibers activation. Composite due to the micromechanical method can be exposed to general normal and shear mechanical and thermal loading which cause to activate the shape memory alloy fibers within polymeric m...

متن کامل

Fabrication of Spiral Stent with Superelastic/ Shape Memory Nitinol Alloy for Femoral Vessel

Stent is a metal mesh tube for opening the obstructed vessels of the body. Ni-Ti alloy is a suitable metal for fabrication of stent due to its potential for applying the appropriate stress and strain to the vessel walls. In this study, super-elastic Nitinol wire was used to build stent samples usable to open femoral vessel. Ageing was performed at 500°C for different periods of time to determin...

متن کامل

TRANSFORMATION BEHAVIOR OF NiTi SHAPE MEMORY ALLOYS TREATED BY THERMOMECHANICAL PROCESSING USING DSC

Abstract: In the present study the effect of thermomechanical treatment (cold work and annealing) on the transformation behavior of NiTi shape memory alloys was studied. Differential scanning calorimetry was used to determine transformation temperature and its relation to precipitates and defects. Three alloys including Ti-50.3at.% Ni, Ti-50.5at.% Ni (reclamated orthodontic wires) and 50.6at...

متن کامل

Compression Analysis of Hollow Cylinder Basalt Continuous Filament Epoxy Composite Filled with Shape Memory Wire

This paper presents an experimental investigation into the compression behavior of shape memory alloy hybrid composites (SMAHC) subjected to quasi-static loading taking into account of rotation effects of shape memory wire in basalt continuous filament (BCF) direct roving epoxy composite. Two types of specimen prepared, the BCF direct roving reinforced epoxy composite filled with shape memory w...

متن کامل

Thermo-mechanical behavior of shape memory alloy made stent- graft by multi-plane model

Constitutive law for shape-memory alloys subjected to multi-axial loading, which is based on a semi-micromechanical integrated multi-plane model capable of internal mechanism observations, is generally not available in the literature. The presented numerical results show significant variations in the mechanical response along the multi loading axes. These are attributed to changes in the marten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002